
Topic 5
Programming
with Classes

ICT167 Principles of

Computer Science

© Published by Murdoch University, Perth, Western Australia, 2020.

This publication is copyright. Except as permitted by the Copyright Act no part of it

may in any form or by any electronic, mechanical, photocopying, recording or any

other means be reproduced, stored in a retrieval system or be broadcast or

transmitted without the prior written permission of the publisher

3

§ Explain what is meant by a constructor

§ Explain what constructors are used for

§ Know when Java will supply an automatic

constructor

§ Know when Java will not supply an

automatic constructor

§ Know how a client uses a class with an

automatic constructor

§ Define the term default constructor

Objectives

4

§ Explain why a class may have several

constructors

§ Be able to supply several useful

constructors with a class

§ Know how to use the different

constructors which belong to a class

§ Know when a set method is to be used

rather than a constructor

§ Define overloading

Objectives

5

§ Use overloaded methods in your own

classes

§ Know how overloading interacts with

automatic type conversion

§ Understand the dangers of passing objects

as parameters (privacy leak !)

§ Understand the enumeration (enum) type

§ Be able to use enumerations in Java

§ Be able to import library classes if

necessary

§ Define the term package in java

Reading – Savitch: Chapters 6.1, 6.4-6.7

Objectives

6

§ A constructor is a special method designed

to initialize instance variables

§ Automatically called when an object is

created (by a client) using new

§ Given exactly the same name as the name

of the class

§ Can have parameters

§ Cannot return a value, so has no return

type, not even void

Constructors

7

§ Often there is more than one constructor for

the same class definition

§ Different versions to initialize all, some, or

none of the instance variables

§ Each constructor has a different signature

(a different number or sequence of

argument types)

§ A constructor with no parameters is called a

default constructor

Constructors

8

§ If no constructor is provided, Java

automatically creates a default constructor

§ If any constructor is provided, then no

constructors are created automatically

§ Eg:
SpeciesFourthTry speciesOfTheMonth = new

SpeciesFourthTry();

§ The new operator says to create a new

object

§ It is followed by the name of a constructor

Constructors

9

§ SpeciesFourthTry() is the constructor in

the above example

§ Until now we have mostly been using

automatic constructors which Java supplies

for our classes (as in the above example)

§ To replace the automatic constructor, the

creator of the class can supply one or more

of their own constructors inside the class

definition

Constructors

10

§ Eg: the following statement, uses the
constructor String(String value) which is

part of the definition for the class String
// create an object of type String

String str=new String("Information Technology");

// create an object of type String – automatic

constructor

// String str=new String();

§ If the creator of the class supplies no constructors

then Java will supply an automatic constructor

§ If the creator of the class supplies any constructor

methods inside the class definition, then Java will

not supply any constructors at all

Constructors

11

§ Constructors are mostly used to give initial

values to instance variables of the new

object

§ However, they may be useful to do some setting

up of the screen for a GUI, or an external file, or

a network connection associated with the object

§ A class may have several constructors

§ They may differ in how they set up a new object

§ By supplying several constructors, the

creator is giving the client a choice of ways
that new objects are set up

Constructors

12Pet Class UML Class

Diagram

Pet
- name: String

- age: int

- weight: double

+ setPet(String newName,int newAge,double newWeight): void

+ setName(String newName): void

+ setAge(int newAge): void

+ setWeight(double newWeight): void

+ getName(): String

+ getAge(): int

+ getWeight: double

+ writeOutput(): void

13

/** Class for basic pet data: name, age, weight */

public class Pet {

private String name;

private int age; //in years

private double weight;//in pounds

// default constructor

public Pet() {

name = "No name yet.";

age = 0;

weight = 0;

}

Example: Pet Class

14

// a constructor with three arguments, only

// called when you create an object with new

public Pet(String initialName, int initialAge,

double initialWeight) {

name = initialName;

if ((initialAge <0)||(initialWeight <0)) {

System.out.println("Error: -ve age or weight.");

System.exit(0);

}else{

age = initialAge;

weight = initialWeight;

}

} // end constructor

Example: Pet Class

15

// a set method–to change an already existing object

public void setPet(String initialName, int

initialAge, double initialWeight) {

name = initialName;

if ((initialAge <0)||(initialWeight <0)) {

System.out.println("Error: -ve age or weight.");

System.exit(0);

}else{

age = initialAge;

weight = initialWeight;

}

} // end

Example: Pet Class

16

// another constructor

public Pet(String initialName) {

name = initialName;

age = 0;

weight = 0;

}

// second set method

public void setName(String newName) {

name = newName; //age, weight are unchanged

}

Example: Pet Class

17

// another constructor

public Pet(int initialAge) {

name = "No name yet.";

weight = 0;

if (initialAge < 0) {

System.out.println("Error: -ve age.");

System.exit(0);

}else{

age = initialAge;

}

}

Example: Pet Class

18

// third set method

public void setAge(int newAge) {

if (newAge < 0) {

System.out.println("Error: Negative age.");

System.exit(0);

}else{

age = newAge;

//name and weight are unchanged

}

}

Example: Pet Class

19

// another constructor

public Pet(double initialWeight) {

name = "No name yet";

age = 0;

weight = initialWeight;

}

// fourth set method

public void setWeight(double newWeight) {

weight = newWeight;

//name and age are unchanged.

}

Example: Pet Class

20

// get methods

public String getName() {

return name;

}

public int getAge() {

return age;

}

public double getWeight() {

return weight;

}

Example: Pet Class

21

public void writeOutput()

{

System.out.println("Name: " + name);

System.out.println("Age: " + age + " years.");

System.out.println("Weight: "+weight+" pounds.");

}

} // end class Pet

Example: Pet Class

22

§ There are several constructors but they

differ in number or type of parameters.

These are:

public Pet() {…}

public Pet(String initialName, int

initialAge, double initialWeight)

{…}

public Pet(String initialName) {…}

public Pet(int initialAge) {…}

public Pet(double initialWeight) {…}

Things To Note About Pet

Class

23

§ There is a DEFAULT constructor

§ That is, one with no parameters, and the creator

is writing this themselves because Java will not

supply any AUTOMATIC constructors for this

class

§ Despite there being constructors, we still

need to supply set (mutator) methods in

case the client wants to modify the values of

the instance variables of already existing

objects

§ Below is an example client program of the
Pet class

Things To Note About Pet

Class

24

import java.util.Scanner;

public class PetDemo {

public static void main(String[] args) {

Pet yourPet = new Pet("Jane Doe");

System.out.println("My records on your pet

are inaccurate.");

System.out.println("Here is what they

currently say:");

yourPet.writeOutput();

System.out.println("Please enter the

correct pet name);

Example: PetDemo Class

25

Scanner keyboard = new Scanner(System.in);

String correctName = keyboard.nextLine();

System.out.println("Please enter the

correct pet age:");

int correctAge = keyboard.nextInt();

System.out.println("Please enter the

correct pet weight:");

double correctWeight=keyboard.nextDouble();

yourPet.setPet(correctName, correctAge,

correctWeight);

Example: PetDemo Class

26

System.out.println(“Updated records say:");

yourPet.writeOutput();

}

}// end class PetDemo

/* OUTPUT:

My records on your pet are inaccurate.

Here is what they currently say:

Name: Jane Doe

Age: 0 years

Weight: 0.0 pounds

Example: PetDemo Class

27

Please enter the correct pet name:

Oscar

Please enter the correct pet age:

7

Please enter the correct pet weight:

15

My updated records now say:

Name: Oscar

Age: 7 years

Weight: 15.0 pounds

*/

Example: PetDemo Class

28

§ The client invokes a constructor by using

new

§ Which constructor is used depends on the

arguments in the parentheses after the class

name after new

§ When the client wants to change the data

(i.e. instance variables) belonging to an

existing object then they do not use a

constructor

Things To Note About

PetDemo

29

§ In general, if the creator supplies no

constructors then Java will automatically

supply one default constructor (i.e. one with

no arguments) which gives all the instance

variables certain initial values (like 0 or the

null reference) depending on their types

§ Any default constructor is also called via

new

MyClass m1 = new MyClass();

Pet yourPet = new Pet();

Things To Note About

PetDemo

30

§ A constructor can call other methods in its class

§ Eg: constructors in the class Pet can be revised to

call one of the set methods as follows:

public Pet(String initialName, int

initialAge, double initialWeight) {

// call to class set method from constructor

setPet(initialName, initialAge, initialWeight);

}

Things To Note About

PetDemo

31

§ Always use a constructor after new when

creating objects

§ For example, using the Pet class above:

Pet myCat = new Pet ("Kitty", 3,

6.5);

§ This calls the Pet constructor with String,

int, and double parameters

§ If you want to change values of instance

variables after you have created an object,

you must use other set methods for the

object

In Summary

32

§ You cannot call a constructor for an object

after it is created

§ Set methods should be provided for this

purpose

§ Calling class’s public methods from its

constructor can lead to problems particularly

when using inheritance (see later) because

it is possible for another class to alter the

behaviour of the public method and thus

adversely affect the behaviour of the
constructor

In Summary

33

§ Overloading means using the same name

for two or more methods within the same

class

§ We have already seen the use of methods

with the same name in different classes (eg:
equals in many classes, charAt in 6String

and StringBuffer classes)

§ It is also convenient to use the same name

for closely related methods within ONE

class

Overloading

34

§ The compiler must be able to tell which

method is to be used in a particular call

§ So the method signature (i.e. number and/or

types of parameters) must be different

§ You may have already used overloaded

methods in the Math class:

Math.max(2,3) returns the integer 3,

but

Math.max(2.5,6.5) returns the double

6.5

Overloading

35

§ The division operator is also overloaded to

perform both integer and floating point

operations (even though it is not exactly a

method) :

3/2 evaluates to 1, but

3.0/2.0 evaluates to 1.5

§ The methods print and println of Java

library class PrintStream are also

overloaded – each method takes one

parameter which can be of type String,

int, or double, etc.

Overloading

36

/** This is just a toy class to illustrate

overloading

The class Overload has 3 different methods - all

named getAverage() */

public class Overload {

public static void main(String[] args) {

double avg1 = Overload.getAverage(40.0,50.0);

double avg2 = Overload.getAverage(1.0,2.0,3.0);

char avg3 = Overload.getAverage('a','c');

System.out.println("average1 = " + avg1);

System.out.println("average2 = " + avg2);

System.out.println("average3 = " + avg3);

} // end main

Example: Overload Class

37

public static double getAverage(double first,

double second) {

return ((first + second)/2.0);

}

public static double getAverage(double first,

double second, double third) {

return ((first + second + third)/3.0);

}

public static char getAverage(char first,

char second) {

return(char)(((int)first + (int)second)/2);

}

}// end class Overload

Example: Overload Class

38

/* Output:

average1 = 45.0

average2 = 2.0

average3 = b

*/

Example: Output

39

§ In the above example, method
getAverage() has 3 definitions within the

same class

§ Therefore, the method getAverage() is

overloaded

§ Note: each definition in this case must have

a different signature. That is:

§ a different number of arguments/parameters, or

§ corresponding arguments/parameters must have

different types

Things To Note

40

§ A method’s name and the number and types

of arguments/parameters are called the

method’s signature

§ Overloading can be applied to any methods

– void methods, methods that return a

value, static methods, non-static methods,

or to any combination of these

Things To Note

41

§ The four set methods of the Pet class can

be replaced with one overloaded set method

with four different signatures, as follows:

public void set(String newName, int newAge,

double newWeight) {

name = newName;

age = newAge;

weight = newWeight;

}

Another Example

42

public void set(String newName) {

name = newName;//age, weight are unchanged

}

public void set(int newAge) {

age = newAge; //name, weight are unchanged

}

public void set(double newWeight) {

weight = newWeight;//name, age unchanged

}

Another Example

43

§ These methods then can be used in a

client class as follows:

Pet myPet = new Pet();

myPet.set("Jack", 2, 5.5);

myPet.writeOutput();

myPet.set("Rex"); // Changing Name

myPet.writeOutput();

myPet.set(5); // Changing age

myPet.writeOutput();

myPet.set(54.0); // Changing Weight

myPet.writeOutput();

Another Example

44

§ Note that Java can allow integers to be used

where doubles are expected. Eg:

double d = 3.54 + 7;

§ The statement on the previous page changes

the weight of the pet to 54.0 pounds:

myPet.set(54.0);

§ Suppose we forgot to include the decimal point

and the zero, and wrote:

myPet.set(54);

Overloading and Automatic

Type Conversion

45

§ What is the result?

§ Instead of changing the pet’s weight, we

have changed the pet’s age to 54 years!

§ The same would happen if you create a Pet

object using the constructor

Pet myPet = new Pet(54);

Overloading and Automatic

Type Conversion

46

§ In general:

§ Java tries to find an exact type match between

arguments and parameters first

§ If it cannot find an exact match then it tries to

convert the type of an argument according to

strict rules about what is allowed to be converted

to what. Eg,

§ints can be converted to doubles

§Note that doubles cannot be automatically converted to

ints

§ If no methods match then you would receive a

compile time error before the program was

allowed to run

Overloading and Automatic

Type Conversion

47

§ Up until now we have mostly defined

classes with instance variables of primitive

types or Strings

§ However, real-world programs are usually

more complicated

§ Eg: a form object may have instance variables

which are buttons

§ Eg: a school object may have instance variables

which are lists of children

Privacy Leaks:

Class Type Instance Variables

48

§ If you are the creator of a class which has

instance variables of class type, then

beware of supplying methods which return

these values (i.e. objects)

§ Such methods may return a reference to a

supposedly hidden data value

§ The client may then be able to use the reference

to change the value

§ This may corrupt your records so that your class

does not behave correctly for that client

Privacy Leaks:

Class Type Instance Variables

49

§ The problem arises because the variables

of a class type contain the memory

address (reference) of where an object is

stored in memory

§ See the example in the text (8th ed)

Listing 6.18 :

§ An Insecure Class - a simplified version of

which is produced below

Privacy Leaks:

Class Type Instance Variables

50

/** File: CadetClass.java

Example of a class that does NOT correctly

hide its private instance variable.

*/

public class CadetClass {

private Pet myPet; // a Pet instance variable

public CadetClass() { // constructor

myPet = new Pet("Guard Dog",5,75.0);

}

Example: Cadet Class

51

public void writeOutput() {

System.out.println(“My pet’s details: ");

myPet.writeOutput();

}

public Pet getPet() {

// returns reference to the object !!!

return myPet;

}

} // end class CadetClass

Example: Cadet Class

52

/** File: Hacker.java

Toy program to demonstrate how a programmer can

access and change private data in an object of the

class CadetClass.

*/

public class Hacker {

public static void main(String[] args) {

CadetClass starFleetOfficer =

new CadetClass();

System.out.println("starFleetOfficer contains: ");

starFleetOfficer.writeOutput();

Example: Client Class

53

Pet badGuy;

badGuy = starFleetOfficer.getPet();

badGuy.setPet("Dominion Spy", 1200, 500); // !!!

System.out.println(“Security breach!!!");

System.out.println("starFleetOfficer contains: ");

starFleetOfficer.writeOutput();

System.out.println("Pet not so private!");

}

} // end class Hacker

Example: Client Class

54

/** Output

starFleetOfficer contains:

Here are my pet's details:

Name: Faithful Guard Dog

Age: 5 years

Weight: 75.0 pounds

Example: Output

55

Security breach!!!

starFleetOfficer now contains:

Here are my pet's details:

Name: Dominion Spy

Age: 1200 years

Weight: 500.0 pounds

Pet not so private!

*/

Example: Output

56

§ Two possible solutions to privacy leaks:

1. Stick to simple problems which only require

methods to return primitive values or Strings (or

nothing) (Strings are ok because they can not

be changed)

2. Read more advanced books and find out about

copy constructor and cloning

§ That is, making a copy of an object, which resides

separately in memory but starts off with the same
data values

Privacy Leaks:

Class Type Instance Variables

57

§ Java offers an enumerated data type which

you can use to restrict the contents of a

variable to certain values (that you want)

§ An enumeration lists the values that a

variable can have, and its definition takes

the following form:

enum MovieRating{

EXCELLENT,AVERAGE,BAD }

§ a semicolon at the end of an enumeration

definition is not necessary; if there is one, it will

be ignored

Enumerations

58

§ An enumeration acts as a class type

§ The compiler creates a class MovieRating

which can be used to declare variables as

follows:

MovieRating rating;

§ The enumerated values are names of public
static objects whose type is MovieRating

§ We can assign a value to an enumerated

variable as:

rating = MovieRating.AVERAGE;

Enumerations

59

§ Then the variable can be used in a switch

statement:

switch (rating) {

case EXCELLENT:

System.out.println(“Must see movie”);

break;

case AVERAGE:

System.out.println(“Movie OK, not great”);

break;

case BAD:

System.out.println(“Skip it!”);

} // end case

Enumerations

60

§ The values of an enumeration behave like

named constants

§ Another example:

enum Suit{

CLUBS,DIAMONDS,HEARTS,SPADES }

Suit s = Suit.DIAMONDS;

§ The class Suit has several methods

available including equals(),
compareTo(), ordinal(), toString()

and valueOf()

Enumerations

61

§ Eg:

s.equals(Suit.HEARTS) …

s.compareTo(Suit.HEARTS) …

s.ordinal() // returns position or ordinal

// value of DIAMONDS in the enumeration

s.toString() //returns string “DIAMONDS”

Suit.valueOf(“HEARTS”) // returns object

// suit.HEARTS

Enumerations

62

§ A package is a collection of related classes

which:

1. May contain classes private to the package

(supporting encapsulation) and

2. Can readily be imported together for use by

other classes (supporting re-use)

§ We will see how Java implementers can set

up their own packages

Packaging

63

§ A number of related classes are placed in a

package

§ A number of related packages are grouped

into a Library

§ However, many useful packages already

exist and are ready for use by implementers

as libraries

§ These include the standard class libraries

Class Libraries

64

§ The classes in the package java.lang are

automatically available to any program

§ Eg, java.lang.System, java.lang.Integer

and java.lang.Math

§ Classes and interfaces from pre-existing

libraries such as in the Java API (also called

Java Library, and is part of the Java software

Development Kit – SDK) can be imported

into a Java program

Class Libraries

65

§ The Java API is organised into a set of

packages, where each package contains a

collection of related classes and interfaces

§ Packages are actually directory structures

used to organise classes and interfaces

Class Libraries

66

Why Use Packages?

§ Packages are useful to programmers as

they provide a mechanism for software

reuse

§ As programmers, our goal should be to

create reusable software components so we

are not required to repeatedly redefine code

in separate programs

§ Another benefit of packages is that they

provide a convention for unique class names

67

Why Use Packages?

§ With thousands of Java programmers

around the world, there is a good chance

that the names you choose for classes will

conflict with the names that other

programmers choose for their classes

68

Importing Packages and

Classes

§ Apart from the java.lang package, which is

automatically imported by Java, all other

packages and classes must be imported into

your program

§ Other classes need to be imported either on

their own:

import packagename.classname;

§ Or, with the whole package:

import packagename.*;

69

Importing Packages and

Classes

§ Eg:

§ // import class Random

import java.util.Random;

§ // import class Date

import java.util.Date;

§ // import package java.util

import java.util.*;

70

The Power of Java is its

Library of Packages

§ There are also other important libraries apart

from java.lang

§ For example, the Java Generic Library (JGL)

contains classes for many basic algorithms

and data structures

§ Swing contains a huge variety of GUI classes

§ As you get more experienced in Java

programming you will be able to take

advantage of these amazing Java packages

71The Power of Java is its

Library of Packages

§ Let’s have a look at some handy Java

packages:

java.io.*

§ Provides classes that are fundamental to the

design of the Java programming language

§ Contains classes for inputting data into a

program and outputting the results of a program

§ Eg: Provides input and output streams, file

operations, etc.

java.awt.*

§ Contains all of the classes for creating user

interfaces and for painting graphics and images

72

The Power of Java is its

Library of Packages
java.applet.*

§ Provides the classes necessary to create an

applet and the classes an applet uses to

communicate with its applet context. Applets for

Internet applications

javax.swing.*

§ Provides a set of "lightweight" (all-Java

language) components that, to the maximum

degree possible, work the same on all

platforms. Graphic User Interface components

§ JButton, JOptionPane, JTextBox, JCheckBox,

etc.

73The Power of Java is its

Library of Packages
§ Eg: Class JCheckBox (in package

javax.swing)
java.lang.Object

|

+--java.awt.Component

|

+--java.awt.Container

|

+--javax.swing.JComponent

|

+--javax.swing.AbstractButton

|

+--

javax.swing.JToggleButton

|

+--

javax.swing.JCheckBox

74

The Power of Java is its

Library of Packages

java.beans.*

§Re-useable software components

§ Allows programmers to develop re-useable

components to create powerful applications and

applets for the Internet

§Others include:

java.net.*

java.security.* // ,etc.

§Have a look at the Java API documentation to

see how much is available

75

Making Your Own Packages

(optional)

§ In order to use a class in a package

1. The class must be declared to be part of the

package

2. The package must be in the right directory

3. The class must be imported by the client class

§ These three steps are further explained as

follows:

76

Making Your Own Packages

(optional)

1. The first line of each class in the package

must be the keyword package followed by

the name of the package

Eg: to declare class A as part of package X.Y put

package X.Y;

as the first line in the source file for A

(If there is no such declaration then the class

belongs to a package called the default package

and all such classes belong to that same

package)

77

Making Your Own Packages

(optional)

2. Make sure that all the .class files in the

package are put in a directory

Eg:

C:\myclassdirectory\X\Y

and that the operating system’s environment

variable

CLASSPATH includes c:\myclassdirectory

Eg:

CLASSPATH=

c:\jdk1.7\lib;c:\myclassdirectory

78

Making Your Own Packages

(optional)

3. Put:

import X.Y.A;

or

import X.Y.*;

in the client source file.

Then you can refer to class A

or, in the client, refer to the class as

X.Y.A

79

Creating a Re-useable Class

§ Define a public class. If the class is not

public, it can be used only by other classes

in the same package

§ Choose a package name and add a package

statement to the source code file for the

reusable class definition

§ Compile the class so it is placed in the

appropriate package directory structure and

make the new class available to the compiler

and interpreter

80

Creating a Re-useable Class

§ Import the reusable class into the program

and use the class

End of Topic 5

